期刊鉴别 论文检测 免费论文 特惠期刊 学术答疑 发表流程

变电站智能安检系统设计(2)

时间:2014-10-21 11:35 文章来源:http://www.lunwenbuluo.com 作者:苏泽荫 点击次数:

  以上的功能只要在DM642上编写串口程序,发送命令数据就可以实现,满足系统要求。

  3 视频采集处理与传输

  变电站智能安检系统利用视频处理自动对获得的视频图像进行处理和分析,实现主动对运动目标的检测和跟踪,进而使用射频识别技术来识别运动目标身份,当发生异常情况时及时报警或提供有用信息,提高了变电站的安全性能,在很大程度上减轻监控人员的视觉负担,监控人员可以不依赖人眼就可以实现变电站的安全监控,极大地降低了监控人员的工作量;并且通过身份识别还能避免非法人员误闯而造成事故的发生,提高了变电站运行的安全性和可靠性。

  红外摄像头具有全天候检测及摄像功能,可以完全穿透浓烟,不需要可见光,在夜晚仍能保持较高的图像清晰度,响应速度快,监视面积大,甚至可以用来防火;能实现智能化的全天候安检工作,也可应用于某些安防场所,安全性好,可长期稳定使用,十分适合本系统。

  系统的框图如图2所示,将程序下载到FLASH中,控制系统运行。RFID射频识别系统将数据通过串口传到DM642上。红外摄像头采集PAL制式视频数据,经TI公司的TVP5150AM高性能视频解码芯片,解码成数字并行信号BT656码流传送到DM642的视频接口,DM642的视频接口解码BT656码流,得到图像,自动通过EDMA传输到SDRAM中存储;DM642的CPU通过访问SDRAM中的图像,进行运动目标检测与跟踪处理后送输出缓冲区(SDRAM中),并根据处理结果和RFID的数据判断是否要报警及提示;再通过以太网接口将数据传输到PC机;DM642的网络接口支持物理层的网络器件(PHY设备),从而完成与外界通过以太网(Ethernet)的连接。实际编程中只需完成EMAC的设置就可以了,不必考虑到物理层PHY芯片。

  4 运动目标检测与跟踪

  在DM642上运行运动检测算法,检测运动目标,结合RFID判断目标身份,因此运动目标检测是关键环节,整个流程如图3所示。

  运动检测是指从序列图像中将变化区域从背景中分割出来,它是图像处理和分析的关键技术。目前常用的运动检测方法有光流法、背景差分法和相邻帧差法[5]。

  光流法具有能够在无法预先知道场景的任何信息的情况下检测到独立运动的物体,但由于受噪声、阴影以及各种遮挡情形的影响,计算得到的光流场分布并不是非常可靠精确,而且光流的计算过程十分复杂,在没有特殊硬件的情况下,很难满足视频序列中运动目标检测的实时性要求[6]。

  相邻帧差法:利用视频图像特征,从连续得到的视频流中提取所需要的动态目标信息。相邻帧差法的实质是将相邻帧图像相减来提取前景目标的移动信息。此方法不能完全提取所有相关特征像素点,只能检测出目标的边缘,在其提取的运动实体内部可能出现空洞。一般难以获得完整轮廓,同时它也很难检测出缓慢运动的目标。

  背景差分法:该方法实现最为简单,并且能够完整地分割出运动目标。实现原理为:将当前帧图像与事先得到的背景图像相减,若差分图像的像素值大于某阈值(自己设定),则判断此像素点为前景点(运动目标区域),否则属于背景区域,操作简单,速度快,因此本系统采用背景差分法作为运动目标检测的主要算法。

  4.1 算法原理

  背景模型法是利用当前图像和背景图像的差分来检测出运动区域,可以提供比较完整的运动目标特征数据,精确度和灵敏度比较高,具有良好的性能表现。背景的建模和自适应是背景模型法的关键。实时输入的场景图像与背景图像进行差分,可以较准确地分割出运动目标。但是背景差分算法也有其天然的缺陷,随着时间的推移,场景的光线、树叶的遮挡或者运动物体滞留都会很大程度地破坏已经建立好的背景图像。为了解决这些问题,最好的方法便是使用背景建模和背景更新算法来弥补[7]。

  高斯背景建模法:图像序列每个像素点的颜色分布用一个模型来描述,通过计算视频图像序列中每一个像素点的平均灰度值及像素灰度的方差,构建由均值和方差组成的初始背景图像。完成背景图像估计后,对每一幅当前帧图像进行检测,若高斯分布模型某个像素点的颜色分布概率大于阈值,则该点被判定为前景点,否则为背景点。

  采集到的原始Y分量数据先通过中值滤波处理,并存入缓冲区。使用DSP自带的图像处理函数void IMG_median_3x3(const unsigned char * restrict in_data,int cols, unsigned char * restrict out_data),其中in_data是指向输入图像数据的指针;cols是指输入或输出的列数(必须是4的倍数);out_data是指向输出图像数据的指针。IMG_median_3x3( )函数每次只处理一行的数据。因此调用该函数只需循环576次就能完成滤波和将数据存到数组的工作,对程序运行速度影响不大[8]。

  设[(x,y)]是二维数字图像的平面坐标,通过计算第k帧图像与背景图像的差[Dk(x,y),]再对图像进行二值化。

  [Dk(x,y)=fk(x,y)-B(x,y)]

  [Rk(x,y)=1,Dk(x,y)≥T0,Dk(x,y)  式中:[fk(x,y)]表示图像序列中当前帧的灰度信息;[B(x,y)]表示当前最新背景的灰度信息;[Rk(x,y)]表示对应于灰度信息的二值化结果;[T]表示对应于灰度信息所选取的阈值。1表示此像素点为前景点(运动目标区域),否则属于背景区域。

  图像的分割阈值T可以根据灰度直方图,采用峰值一谷值法获得,统计差分图像的灰度直方图,把分别对应目标和背景的两个峰值的中点的灰度值作为阈值[9]。

  4.2 实验结果

  根据实验结果分析,此方案总体没问题,只要人经过监控区域,均能检测到,并调用RFID射频设别系统进行身份识别,若是工作人员将会反馈位置身份信息,否则会报警,满足系统要求,达到预期目的。

  5 结 论

  变电站智能安检系统采用RFID射频识别系统与智能视频监控技术(IVS),有效地提高了巡检质量和到位率,保证电力设备的安全运行;极大地降低了监控人员的工作量,并且通过身份识别还能避免不是合法的工作人员误闯而造成事故的发生,提高了变电站运行的安全性和可靠性。

  智能视频分析系统能把事后取证变成主动防御,算法处理由前端来实现,后端的服务压力非常小,能够以最省的成本,实现最有效的技术防范。无用视频信息被存储、传输,既浪费了存储空间又占用了带宽,采用智能分析的目的是为了缓解视频存储所需要的空间和传输所需的带宽压力,更有助于提升监控系统的应用价值。可以预见,在高清监控普及后,智能视频分析应用将是未来安防行业争夺的制高点[10]。

  参考文献

  [1] 董建华,潘英吉.基于RFID的变电站设备巡检信息管理系统[J].世界华商经济年鉴·高校教育研究,2008(17):115-118.

  [2] 李静,王素珍,贺雪飞.RFID技术在变电站巡检系统中的应用[J].微型机与应用,2011,30(22):56-59.

  [3] 张健翀.基于射频识别RFID技术室内定位系统研究[D].广州:中山大学,2010.

  [4] 张晓波,郭鹏飞.基于RFID的变电站设备巡视管理系统设计[J].青海电力,2007,26(z1):32-34.

  [5] 杨金玲,柴颖,狄红卫,等.基于DM6446的智能视频监控系统的设计[J].电子测量技术,2010,33(3):26-29.

  [6] 田红丽.变电站遥视环境中运动目标检测与跟踪的技术的研究[J].城市建设理论研究,2013(32):69-71.

  [7] 魏宗坤.基于DM642的视频监控系统及动目标检测算法的实现[D].成都:电子科技大学,2008.

  [8] 姚树军.基于DM642的运动目标识别与跟踪系统[D].天津:天津大学,2012.

  [9] 谭永宏.基于TMS320C6701的嵌入式智能视觉监控系统设计与实现[J].计算机系统应用,2008(9):73-76.

  [10] 马晓东.目标识别与跟踪技术引领智能监控发展潮流[J].中国公共安全,2012(14):156-161.


  •   论文部落提供核心期刊、国家级期刊、省级期刊、SCI期刊和EI期刊等咨询服务。
  •   论文部落拥有一支经验丰富、高端专业的编辑团队,可帮助您指导各领域学术文章,您只需提出详细的论文写作要求和相关资料。
  •  
  •   论文投稿客服QQ: 论文投稿2863358778 论文投稿2316118108
  •  
  •   论文投稿电话:15380085870
  •  
  •   论文投稿邮箱:lunwenbuluo@126.com

联系方式

  • 论文投稿客服QQ: 论文投稿2863358778
  • 论文投稿客服QQ: 论文投稿2316118108
  • 论文投稿电话:15380085870
  • 论文投稿邮箱:lunwenbuluo@126.com

热门排行

 
QQ在线咨询
咨询热线:
15380085870
微信号咨询:
lunwenbuluoli