时间:2014-03-06 10:40 文章来源:http://www.lunwenbuluo.com 作者:贾永锋 点击次数:
经验模态分解法EMD[11]是由美国NASA的黄锷博士提出的一种信号分析方法。它适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(IntrinsicModeFunction,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。
EMD是基于以下假设条件:①数据至少有一个最大值和一个最小值两个极值点;②数据极值点间的时间尺度惟一确定局部时域特性;③如果数据没有极值点但必须有拐点,通过对数据微分一次或多次求得极值,再通过积分来获得分解结果。
2.2数据重构
对原始数据进行EMD分解后,得到有限个IMF分量。为了降低原始数据中的非平稳性,需要对得到的各分量进行相关系数分析,筛选出有用的IMF分量,对其进行重构,以得到一个与原始数据近似的新数据进行预测实验。
数据重组的方法有多种,本文采用相关系数分析法进行数据的筛选。由于篇幅有限,关于EMD分解与重构的代码不在本文提供。
2.3应用训练好的神经网络对合成数据预测
对于非线性系统,BP神经网络预测有着明显的优势。但是在复杂的非线性系统中,非平稳因素给预测带来了一定的困难。正是因为EMD分解降低了各个分量的平稳性[12],才得到了广泛应用[13-15]。金融数据等时间序列随着时间,以及在多种因素的影响下会随之改变,所以数据本质上是非平稳的,因此利用神经网络对该数据进行预测,数据的平稳性使得其预测结果不是很理想,为了提高预测精度,我们用EMD方法对数据进行分解,以降低其非平稳性对预测精度的影响。然后对分解后的各分量进行相关系数分析比较,选取有用的IMF分量,进行数据的合成,从而得到一个与原始数据近似的新数据。将重组后的拟合数据输入到训练好的BP神经网络进行预测。预测过程如图1所示。
3应用实例和分析
3.1股票数据的BP神经网络训练
将中国石化股票从2011年6月至2011年12月共130天的股票价格数据进行样本划分。用前60天的数据来预测后5天的数据,作为网络训练集。选取剩下的60天数据预测最后的5天,作为测试集。
3.3数据合成及预测
本文对中国石化股票数据(图3)进行EMD分解后得到4个IMF分量和1个剩余分量。对4个分量分别进行与剩余分量的相关系数分析。分析结果表明,IMF3和IMF4相关性较大,并与剩余分量的相关性也较大(相关门限值选取0.3)。所以选取IMF3和IMF4两个分量与剩余分量进行重构,得到与原始数据近似的较平滑的新数据如图9所示。
经过比较可知,对于具有非平稳性行为强烈的股票时间序列的预测,基于EMD的BP神经网络预测要比直接BP神经网络预测更为准确。
对于非平稳的时间序列,BP神经网络预测有着明显的优势,但是对于影响因素复杂的非平稳数据,多种因素的干扰给预测带来了一定的困难。EMD分解分离了各个不同因素的相互干扰,通过对各分量单独预测再合成的处理,从而提高了预测精度。从表1可以看出最终的预测误差经过EMD分解的信号要精确于直接神经网络预测。从图4中可以看出影响信号平稳性程度最大的是IMF1,如果再对其进行分解处理,整个系统的预测精度会得到更大的改善。
4结束语
对于非平稳的时间序列,BP神经网络预测有着明显的优势,但是对于影响因素复杂的非平稳数据,多种因素的干扰给预测带来了一定的困难。EMD分解分离了各个不同因素的相互干扰,通过对各分量分析再合成的处理,提高了预测精度。目前EMD方法主要用于模拟信号和大气数据分析[13-15],用于金融数据预测还较为少见。本文将其与BP神经网络结合,构建了EMD-BP神经网络预测模型。从本文的预测过程和仿真结果可以看到,利用EMD分解的BP神经网络预测优于直接BP神经网络预测,相比其精确度有了明显的提高。
参考文献:
[1]刘瑛慧,曹家琏.时间序列分析理论与发展趋势[J].电脑知识与技术,2010.2:257-258
[2]刘佳,赵文慧,刘光荣.基于SAS的非平稳时间序列分析及实证研究[J].汕头大学学报.2010.2(1):48-53.
[3]李海林,郭崇慧,时间序列数据挖掘中特征表示与相似性度量研究综述[J].计算机应用研究,2013.5(30):1285-1290
[4]魏宇.中国股票市场的最优波动率预测模型研究[J].管理学报,2010.6(6):936-942
联系方式
随机阅读
热门排行