期刊鉴别 论文检测 免费论文 特惠期刊 学术答疑 发表流程

基于GATE的中文领域信息抽取研究

时间:2015-01-14 11:31 文章来源:http://www.lunwenbuluo.com 作者:陈晓红 点击次数:

  摘 要:为了准确快速地抽取出用户感兴趣的信息,本文提出基于GATE的领域信息抽取。本文以“教育”领域为例,修改GATE的中文抽取插件Lang_chinese,精准快速地抽取出该领域的学校名、专业名、人名,为进一步提高中文信息抽取的准确率和召回率提供了研究基础。
 
  关键词:GATE;领域抽取
 
  中图分类号:TP391.1
 
  随着现代通信和传播技术的不断发展,信息巨量生产、高速传播,人们被大量汹涌而来的信息所包围。怎么从浩瀚如烟的信息海洋中快速、准确地找到所需要的信息成为当前信息处理的研究重点。
 
  1 信息抽取与GATE框架
 
  1.1 信息抽取。信息抽取(Information Extraction,简称IE)是指从文本中直接抽取用户感兴趣的信息,以结构化的形式存入数据库中,可供用户直接使用或进行下一步的信息处理[1]。信息抽取是领域相关的,只能抽取特定领域或某些范围内有限种类的信息。当有大量的文本需要阅读处理的时候,信息抽取可以高效、精准地提取出所需要的领域信息。
 
  1.2 GATE框架。GATE(General Architecture for Text Engineering)是英国Sheffield大学开发的,应用非常广泛的开源性自然语言处理框架。GATE框架为信息抽取提供了基本平台[2]。针对英文信息抽取,已经开发了基于该框架的应用实例插件ANNIE。ANNIE在英文信息抽取的准确率和召回率方面均已达到较高水准,并被一些商业公司使用,如惠普、大英电信等。
 
  2 基于GATE的中文领域信息抽取
 
  2.1 GATE中自带的中文信息抽取插件。GATE平台除了提供英文信息抽取插件ANNIE,也提供了中文信息抽取插件Lang_Chinese,但其设计比较简单。以中文插件Lang_Chinese的默认设置对文本进行抽取时,如希望能抽取出需要的领域信息,如在“教育”领域希望抽取出“学校”等组织单位,“校长”等人员信息,则结果不能让人满意。
 
  分析其中的原因,主要有以下几点:(1)中文分词处理不够专业。(2)缺乏针对专业领域构造的中文词表库。(3)GATE中自带的JAPE抽取规则,多是针对英文命名实体识别编写,对中文支持不够,导致相当部分的中文不能被识别到。
 
  2.2 改进的GATE中文领域信息抽取。本研究选取Gate7.1为开发平台,针对其中文信息抽取插件Lang_Chinese的不足,面向“教育”领域,研究了改进的方法。下面就其中的关键技术予以介绍:(1)文档预处理。本研究采用中科院计算技术研究所开发的ICTCLAS分词系统对文档进行分词预处理。本研究将分词后的文档删去词性信息,将分开的词组使用空格隔开,这样就和英文的格式相同,每个分开后的词语可做为一个Token,便于GATE抽取。(2)增加领域词表。词表是GATE进行信息抽取的重要资源,词表的丰富完整影响着命名实体的识别效果。Gate中的词表用.lst文件表示,中文组件中自带有城市名、组织名、公司名等。然后这些词表名存在.def索引文件中供匹配访问。(3)修改JAPE规则。GATE中使用JAPE规则来实现命名实体的识别。本文针对中文“教育”领域,编写对应的JAPE规则,使得该领域的命名实体能够得到准确的识别抽取。
 

  •   论文部落提供核心期刊、国家级期刊、省级期刊、SCI期刊和EI期刊等咨询服务。
  •   论文部落拥有一支经验丰富、高端专业的编辑团队,可帮助您指导各领域学术文章,您只需提出详细的论文写作要求和相关资料。
  •  
  •   论文投稿客服QQ: 论文投稿2863358778 论文投稿2316118108
  •  
  •   论文投稿电话:15380085870
  •  
  •   论文投稿邮箱:lunwenbuluo@126.com

联系方式

  • 论文投稿客服QQ: 论文投稿2863358778
  • 论文投稿客服QQ: 论文投稿2316118108
  • 论文投稿电话:15380085870
  • 论文投稿邮箱:lunwenbuluo@126.com

热门排行

 
QQ在线咨询
咨询热线:
15380085870
微信号咨询:
lunwenbuluoli