浅谈提高初中学生数学解题能力的途径(2)
时间:2014-01-13 14:30 文章来源:http://www.lunwenbuluo.com 作者:翟洁莹 点击次数:
在教学中对于所有例题的讲解及示范解题,都要充分展现解题过程的四个程序及每个程序进行的过程,并且不断给以总结、反复强调。使学生在日积月累的熏陶中去掌握解题程序,领悟各程序中思维的方向和思维的进程。当然,这样做就必须要求教师事先要对例题的选取和设计进行深入研究,对例题的目的意图、隐含条件的析取、干扰信息的排除、思维偏差的纠正、解题策略的制定、解题关键的把握以及解题后的开拓和引申等都要做到心中有数。只要这样,才能避免就题论题、就事论事、无法展现思维过程的形式主义教学,从而真正达到解题教学的要求。
同时,要帮助学生掌握转化的数学方法。在教学中结合例题教学,帮助学生掌握一些常用的变形手段和转化方法,帮助学生理解这些方法的原理,把握方法的要点、作用、使用条件、使用范围以及这些方法的“变式”,学会灵活运用。在初中数学中,除了上述的分析法、综合法、归纳法等推理方法外,常用的还有换元法,消元法,代定系数法等。
三、运用数形结合,提高学生的解题能力
数形结合是数学中最重要的方法之一,人们一般把代数称为“数”,把几何称为“形”。数与形看上去是两个相互对立的概念,其实它们在一定条件下可以相互转化。代数方法容易操作,若不配以“形”,许多问题过于抽象,理解困难;几何图形比较直观,但证明几何问题常需添加辅助线,又使人感到难以捉摸,这就要借助“数”的方法去揭示其内在规律。数量问题可以转化为图形问题,反过来图形问题也可以转化为数量问题,而数形结合就是实现这种转化的有效途径。
“数”与“形”无处不在。借助图形能使问题明朗化,不但直观,而且全面,整体性强,能比较容易地找到问题的关键所在,对解题大有益处。例如:①求几个图象围成的图形的面积,需要根据函数解析式求出特殊点的坐标,通过整合图形,分割图形,补全图形来求解。②函数中的极值问题。③河边取水问题,求两条线段之和最小。需要通过轴对称,利用轴对称的性质,构造两点之间线段最短,来得到最小值。④两边之差最大问题.构造三角形,根据两边之差都小于第三边来解决等等。
四、探讨解题过程,养成解题后反思习惯
解题后的探讨、分析与研究就是对解题的结果和解题的方法进行反省,对解题中的主要思想观点、关键因素及类同问题的解法进行概括、推广,从而帮助学生从中提炼出数学的基本思想和基本方法加以掌握,成为以后解新的问题时的有力工具。因此,使学生养成解题后的反思习惯,是解题教学非常重要的一环,必须十分重视。
例如,检验求解结果。主要是核查结果是否正确无误,推理是否有理有据,解答是否祥尽无漏。
例2:设x、x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两个根,当a为何值时,x12+x22有最小值?最小值是多少?
解:x12+x22=(x1+x2)2-2x1x2
=(-2a)2-2(a2+4a-2)
=4a2-2a2-8a+4
=2a2-8a+4
=2 (a2-4a)+4
=2(a-2)2-4
∴当a=2时,x12+x22有最小值,且最小值为-4。
- 论文部落提供核心期刊、国家级期刊、省级期刊、SCI期刊和EI期刊等咨询服务。
- 论文部落拥有一支经验丰富、高端专业的编辑团队,可帮助您指导各领域学术文章,您只需提出详细的论文写作要求和相关资料。
-
- 论文投稿客服QQ:
2863358778、
2316118108
-
- 论文投稿电话:15380085870
-
- 论文投稿邮箱:lunwenbuluo@126.com